Toxicoinformatics at the NCTR

Daniel A. Casciano, Ph.D.

National Center for Toxicological Research

Food and Drug Administration

NCTR Strategy

- Develop a validated gene expression data base in surrogate organisms
- Develop a validated gene expression data base in humans (long-term goal)
- Develop a proteomic capacity
- Develop a metabonomic capacity
- Utilize existing expertise in statistics and bioinformatics to support these initiatives

Systeomic Approach to Toxicogenomics

Centers of Excellence

- The Functional Genomics Center
- The Structural Genomics Center
- The Toxicoinformatics Center
- The Hepatotoxicity Center
- The Phototoxicity Center

Functional Genomics

 the study of gene function on a whole or partial genome scale that may include the study of gene expression using DNA microarray

Components of Microarray Experiment

Functional Genomics Center

- Purchased necessary equipment to print and scan slides
- Developed a core center to standardize molecular, analytical, and informatic tools
- Several protocols from various NCTR divisions in various stages of preparation

Functional Genomics Center

- We have purchased a collection of rat, mouse and human genes.
 - 4000 rat genes
 - 5000 mouse genes
 - 8300 human genes
- Cost per slide is ~10% of commercially prepared slides.

Types of Genes

- Toxicology, drug metabolism
- DNA metabolism, replication, repair
- Cell cycle, apoptosis
- Oncogenes, tumor suppressors, receptors
- Intermediary metabolism, hormones
- Stress response
- Inter- and Intra-cellular communication
- Transcription factors
- etc., etc., etc.,....

Status

- Standardizing techniques
- Developing a mito chip
- Defining control gene expression patterns in aging Fisher 344 rats
- Defining circadean gene expression in Fisher 344 rats
- Developing collaborations within and without the NCTR

Microarray Improvements

- Reduction in variability
- Stronger signals better labeling of cDNA
- Reduced autofluorescence BSA treatment, sodium borohydride
- Increased uniformity across slide lifter slips instead of coverslips
- Coefficients of variability are now 12-15%

Laser Capture Microdissection CA Region of Hippocampus

Before

After

Cells on cap

Gene Expression Pattern in 4 Brain Regions

- Objective Relationship of regional differences with gene expression pattern
- Filter array Clontech Atlas 1.2K rat array
- 29 mRNA samples from 4 brain regions
 - S.Nigra (8 samples)
 - Striatum (6 samples)
 - Parietal Cortex (PC, 7 samples)
 - Posteriolateral cortical amygdaloid nucleus (PLCo: 8 samples)
- Clustering: PCA and 2-way HCA

Principle Component Analysis (PCA) Model

- 29 samples for the model (circle)
- 18 new samples are tested, and their identities are not revealed (triangle).
- Conclusion: PCA using 339 differentially expressed genes can efficient separate the 4 brain regions.

SIMCA – Identification of discriminatory genes

- Rank order 339 genes based on their discriminatory power (DP) to distinguish 4 regions using SIMCA
- The majority of genes has the DP < 20
- 63 genes > 20

Discriminatory Power

2-Way Clustering

Proteomics

Hepatotoxicity-idiosyncratic drug reactions

PC-based visualization/quantitative analysis of 2-D gels

Robotics: sample retrieval and preparation.

2D-Gel Electrophoresis

Proteomics

Chemistry

Biomonitoring metabolites, biomarkers (Micromass Ultima Quattro Triple Quad)

Detection large intact biomolecules (Seldi-TOF; MALDIs TOF; MAB TOF)

Protein Sequence Identification and fragmentation patterns (QTOF)

Rapid identification of food-borne pathogens and biological weapons of mass destruction

Status

- Developed an infrastructure
- Recruited analytical and biological staff
- Defining the mitoproteome of Fischer 344 rat
- Collaborations within and without the NCTR

Metabonomics

 the quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modification

Metabonomics

- Purchased 600 mHZ NMR
- Concept papers approved for protocol development

Toxicoinformatics

- Provide effective software infrastructure and analysis capabilities to address the following challenges:
 - managing and integrating different data sources
 - analyzing and visualizing these data to formulate new regulatory standards

Omics Research at NCTR

- Traditional toxicological research
 - Animal models
 - Conventional methods (in vitro and in vivo assays)
- Omics research genomics, proteomics and metabonomics
 - High throughput technology is a driving force for omics research
 - Characteristics large volume of data
- Examples:
 - Genomics: Microarray
 - Proteomics: 2D-gel/MS and SELDI-TOF
 - Metabonomics: NMR

ArrayTrack: DB-Lib-Tool Structure

MicroarrayDB - Validated Database

Objective: Data entered only if they meet prescribed standards for completeness, accuracy (QA/QC) and ontology

- Establish standardized experimental protocols (hybridization, labeling and RNA extraction) at NCTR
- Data stored are defined by the MIAME (Minimum Information About a Microarray Experiment) standard
 - Results can be interpreted
 - Experiment can be independently verified
- Controlled vocabulary and ontology defined by MGED ontology working group

MicroarrayDB - Validated Database (cont.)

- Specify toxicology-relevant information
 - MIAME/Tox (collaborating effort from ILSI, EBI and NCT)
 - Developed based on MIAME 1.1
 - Define minimum (additional) info for toxicogenomics research
 - ArrayTrack is MIAME/Tox compliant

Security

- Data are protected at the individual experiment level
- Owner of the data defines read and/or write protection of the data

ArrayTrack: DB-Lib-Tool Structure

ArrayTrack: DB-Lib-Tool Structure

ArrayTrack

http://weblaunch.nctr.fda/jnlp/arraytrack

Proteomics Data

- Cross-linked between two libraries
- Link genomics data with proteomics data
- Link in-house data with public data

Toxicoinformatics Integrated System (TIS)

Toxicoinformatics and Risk Assessment

- 1. Suspected toxicants
- 2. Nominating chemicals for expensive assay

Systeomic Experiments

- Acetaminophen
- Glitazone (NCTR, CDER, Merck)

Acknowledgment

- Jim Fuscoe
- Luke Ratnasinghe
- John Bowyer
- Rob Turesky
- Rick Edmondson
- Rick Beger

- Weida Tong
- Hong Fang
- Bob Delongchamp
- Jim Chen
- Yvonne Dragan